Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.
نویسندگان
چکیده
Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.
منابع مشابه
Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility
Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm(2)V(-1)s(-1), large m...
متن کاملMultifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene)
A multifunctional sensor that responds to all – static/quasi-static or dynamic temperature or force – is reported. The sensor is based on a ferroelectric poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) capacitor connected to the gate of organic field-effect transistor (OFET). Both, the P(VDF-TrFE) capacitance and the output voltage of the P(VDF-TrFE)/OFET sensor exhibit a logarithmic ...
متن کاملTowards Room - Temperature deterministic ferroelectric control of ferromagnetic thin films
The persisting demand of higher computing power and faster information processing keeps pushing scientists and engineers to explore novel materials and device structures. Within emerging functional materials, there is a focus on multiferroics materials and material-systems possessing both ferroelectric and ferromagnetic orders. Multiferroics with two order parameters coupled through a magnetoel...
متن کاملSub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer
There is a rising interest in employing the negative capacitance (NC) effect to achieve sub-60 mV/ decade (below the thermal limit) switching in field-effect transistors (FETs). The NC effect, which is an effectual amplification of the applied gate potential, is realized by incorporating a ferroelectric material in series with a dielectric in the gate stack of a FET. One of the leading challeng...
متن کاملJunctionless ferroelectric field effect transistors based on ultrathin silicon nanomembranes
The paper reported the fabrication and operation of nonvolatile ferroelectric field effect transistors (FeFETs) with a top gate and top contact structure. Ultrathin Si nanomembranes without source and drain doping were used as the semiconducting layers whose electrical performance was modulated by the polarization of the ferroelectric poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 27 شماره
صفحات -
تاریخ انتشار 2015